Latest News
Electrochemical CO2 Utilisation
CO2 Capture & Utilisation
CO2 Capture & Utilisation
CO2 Capture & Utilisation
CO2 Capture & Utilisation
Power production from combustion of fossil fuels releases CO2, which is mainly responsible for global warming and cause severe problems to both ecology and human beings. The rise in atmospheric CO2 levels must be slowed or reverted to avoid undesirable climate change. Materials capable of cost-effective CO2 conversion into chemicals and fuels would help in stabilizing the atmospheric levels of greenhouse gas. The potential products can be obtained with CO2 conversion are formic acid, methanol, CO and ethylene. At present there is no commercially viable process for the conversion of CO2 to useful chemicals and the current state-of-the-art materials are expensive, which limit commercial implementation. For example, although several materials are known for the electrochemical conversion of CO2, until now only precious metals such as Au and Ag could promote this process with Faradaic efficiency more than 80%. Because of the durability and poisoning effect many efficient catalysts are far beyond commercialization. We strategically focus on the synthesis of nanomaterials in various forms (metals, bimetals, alloys, intermetallic, core shell etc.) and study their efficiency in the photochemical, electrochemical and heterogeneous conversion of CO2 into fuel and chemicals. The reaction mechanism and kinteics are completely understood by a detailed electronic structure calculations. Our materials and methods are expected to have the potential to convert waste CO2 to produce gasoline, diesel fuel, jet fuel, and industrial chemicals.
Power production from combustion of fossil fuels releases CO2, which is mainly responsible for global warming and cause severe problems to both ecology and human beings. The rise in atmospheric CO2 levels must be slowed or reverted to avoid undesirable climate change. Materials capable of cost-effective CO2 conversion into chemicals and fuels would help in stabilizing the atmospheric levels of greenhouse gas. The potential products can be obtained with CO2 conversion are formic acid, methanol, CO and ethylene. At present there is no commercially viable process for the conversion of CO2 to useful chemicals and the current state-of-the-art materials are expensive, which limit commercial implementation. For example, although several materials are known for the electrochemical conversion of CO2, until now only precious metals such as Au and Ag could promote this process with Faradaic efficiency more than 80%. Because of the durability and poisoning effect many efficient catalysts are far beyond commercialization. We strategically focus on the synthesis of nanomaterials in various forms (metals, bimetals, alloys, intermetallic, core shell etc.) and study their efficiency in the photochemical, electrochemical and heterogeneous conversion of CO2 into fuel and chemicals. The reaction mechanism and kinteics are completely understood by a detailed electronic structure calculations. Our materials and methods are expected to have the potential to convert waste CO2 to produce gasoline, diesel fuel, jet fuel, and industrial chemicals.
Latest News
Publication List (2003-2011)
-
Yb3AuGe2In3: An ordered variant of the YbAuIn structure exhibiting mixed-valent Yb behavior.Chondroudi, M.; Peter, S. C.; Malliakas, C. D.; Balasubramanian, M.; Li, Q.; Kanatzidis, M. G. Inorg. Chem., 2011, 50, 1184.
-
Thallium chalcogenide based wide band gap semiconductors: TlGaSe2 for x- and γ-ray detector. Johnsen, S.; Liu, Z.; Peters, J.; Song, J-H.; Peter, S. C.; Cho, N.; Malliakas, C. D.; Jin, H.; Freeman, A. J.; Wessels, B.W.; Kanatzidis, M. G. Chem. Mater., 2011, 23, 3120.
-
Anomalous thermal expansion in the square-net compounds RE4TGe8 (RE = Yb, Gd; T = Cr–Ni, Ag). Peter, S. C.; Chondroudi, M.; Malliakas, C. D.; Balasubramanian, M.; Kanatzidis, M. G. J. Am. Chem. Soc., 2011, 133, 13840.
-
Tl2Hg3Q4 (Q = S, Se, Te): High density, wide band gap semiconductors. Johnsen, S.; Peter, S. C.; Nguyen, S.; Song, J-H.; Jin, H.; Freeman, A. J.; Kanatzidis, M.G. Chem. Mater., 2011, 23, 4375.
-
Dimensional reduction: A design tool for new radiation detection materials. Androulakis, J. E.; Peter, S. C.; Li, H.; Malliakas, C. D.; Peters, J.; Liu, Z.; Wessels, B.W.; Song, J-H.; Jin, H.; Freeman, A. J.; Kanatzidis, M. G. Adv. Mater. 2011, 23, 4163.
-
Crystal structure and properties of Yb5Ni4Ge10. Peter, S. C.; Rayaprol, S.; Francisco, M.C.; Kanatzidis, M.G. Eur. J. Inorg. Chem., 2011, 3963-3968.
-
45Sc solid state NMR studies of the silicides ScTSi (T = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt). Harmening, Th.; Eckert, H.; Fehse, C. M.; Peter, S. C.; Pottgen, R. J. Solid State Chem., 2011, 184, 3303.
-
Competing interactions and magnetic frustration in Yb4LiGe4. Disseler, S. M.; Svensson, J. N.; Peter, S. C.; Beyers, C.; Baines, C.; Amato, A.; Giblin, S. R.; Carretta, P.; Graf, M. J. Phy. Rev. B, 2011, 87, 174429.
-
119Sn Mössbauer spectroscopy of the intermetallic compound HoRhSn. Gurgul, J.; Latka, K.; Pacyna, A.W.; Peter, S. C.; Pöttgen, R. Intermetallics, 2010, 18, 129.
-
Ferromagnetic ordering in ThSi2 type CeAu0.28Ge1.72. Peter, S. C.; Kanatzidis, M. G. J. Solid State Chem., 2010, 183, 878.
-
The new binary intermetallic YbGe2.83. Peter, S. C.; Kanatzidis, M. G. J. Solid State Chem., 2010, 183, 2077.
-
Indium flux-growth of Eu2AuGe3: A new germanide with an AlB2 superstructure. Peter, S. C.; Malliakas, C. D.; Chondroudi, M.; Schellenberg, I.; Rayaprol, S.; Pottgen, R.; Kanatzidis, M. G. Inorg. Chem., 2010, 49, 9574.
-
Synthesis, structure and magnetic properties of new intermetallicsYbAu2In4 and Yb2Au3In5. Peter, S. C.; Salavador, J.; Martin, J. B.; Wong-Ng, W.; Kanatzidis, M. G. Inorg. Chem., 2010, 49, 10468.
-
Bulk and local properties of DyRhSn. Latka, K.; Gurgul, J.; Pacyna, A. W.; Verbovytsky, Y.; Przewoznik, J.; Peter, S. C.; Pöttgen, R. J. Alloys Compd., 2009, 480, 81.
-
The polar mixed-valent lanthanum iron(II, III) sulfide La3Fe2S7: Synthesis, crystal and electronic structure, 57Fe Mössbauer spectra, magnetic susceptibility & electrical resistivity. Mills, M.; Braeunling, D.; Rosner, H.; Schnelle, W.; Peter, S. C.; Pottgen, R.; Ruck, M. J. Solid State Chem., 2009, 182, 1136.
-
Synthesis, crystal structure, and transport properties of Na22Si136. Beekman, M.; Peter, S. C.; Grin, Y.; Nolas, G. S. J. Electr. Mater., 2009, 38, 1136.
-
XPS and Mössbauer studies on BaSn1-xNbxO3 (x 0.100). Singh, P.; Benjamin, J. B.; Peter, S. C.; Kumar, D.; Parkash, O. Mat. Res. Bull., 2008, 43, 2078.
-
Electronic structure, electrical and dielectric properties of BaSnO3 below room temperature. Singh, P.; Brandenburg, B. J.; Peter, S. C.; Singh, P.; Kumar, D.; Parkash, O. Jpn. J. Appl. Phys., 2008, 47, 3540.
-
Searching for heaxagonal analogous of the half-metallic half Heusler XYZ compounds. Casper, F.; Felser, C.; Seshadri, R.; Peter, S. C.; Pöttgen, R. J. Phys. D: Appl. Phys., 2008, 41, 035002.
-
Electronic structure of RAuSn (R = Sc, Ce, Gd, Er, and Lu) investigated with X-ray photoelectron spectroscopy and band structure calculations. Gegner, J.; Wu, H.; Berggold, K.; Peter, S. C.; Harmening, T.; Pottgen, R.; Tjeng, L. H. Phys. Rev. B 2008, 77, 035103.
-
The high-temperature modification of LuAgSn and high-pressure high-temperature experiments on DyAgSn, HoAgSn, and YbAgSn. Heying, B.; Rodewald, U. Ch.; Heymann, G.; Hermes, W.; Schappacher, F. M.; Riecken, J. F.; Peter, S. C.; Huppertz, H.; Pöttgen, R. Z. Naturforsch., 2008, 63b, 193.
-
A 119Sn Mössbauer and 45Sc solid state NMR spectroscopic study of the stannides ScTSn (T = Ni, Pd, Pt). Harmening, T.: Peter, S. C.; Eckert, H.; Pöttgen, R. Solid State Sci., 2008, 10, 1395.
-
Structure, chemical bonding, and properties of the thallides EuMg1–xTl1+x (x =0.013–0.058). Kraft, R.; Hoffmann, R. -D.; Peter, S. C.; Pöttgen, R.; Grin, Y.; Prots’, Y. M.; Schnelle, W.; Schmidt, M.; Baitinger, M. Chem. Mater., 2008, 20, 1948.
-
Hyperfine interactions studied by 119Sn Mössbauer spectroscopy in SmRhSn. Gurgul, J.; Latka, K.; Pacyna, A. W.; Verbovytsky, Y.; Heying, B.; Peter, S. C.; Pöttgen, R. Hyperfine Interact., 2008, 184, 33.
-
Mössbauer and magnetic characterization of TbRhSn. Latka, K.; Gurgul, J.; Pacyna, A. W.; Verbovytsky, Y.; Heying, B.; Peter, S. C.; Pöttgen, R. Mössbauer and magnetic characterization of TbRhSn. Hyperfine Interact., 2008, 184, 39.
-
Correlation between microstructure and electrical conduction behavior with defect structure of niobium doped barium stannate. Singh, P.; Peter, S. C.; Kumar, D.; Parkash, O. J. Alloys Compd., 2007, 437, 34.
-
Structure and properties of α- and ß-CeCuSn. Peter, S. C.; Rayaprol, S.; Hoffmann, R. -D.; Rodewald, U. Ch.; Pape, T.; Pöttgen, R. Z. Naturforsch., 2007, 61b, 647.
-
The stannides YNixSn2 (x = 0, 0.14, 0.21, 1) - Syntheses, structure and 119Sn Mössbauer spectroscopy. Peter, S. C.; Pöttgen, R. Monatsh. Chem., 2007, 138, 381.
-
New stannide ScAgSn – Determination of the superstructure via two-dimensional 45Sc solid state NMR. Peter, S. C.; Eckert, H.; Fehnse, C.; Zhan, L.; Hoffmann, R. -D.; Pöttgen, R. Inorg. Chem., 2007, 46, 771.
-
151Eu and 119Sn Mössbauer spectroscopy of Eu5Sn3S12 and Eu4LuSn3S12. Jakubcová, P.; Johrendt, D.; Peter, S. C.; Rayaprol, S.; Pöttgen, R. Structure, magnetic properties, Z. Naturforsch. B, 2007, 62, 5.
-
Differentiation of the scandium sites in ScAuSi and ScAuGe via 45Sc solid state NMR spectroscopy. Peter, S. C.; Eckert, H.; Pöttgen, R. Z. Naturforsch., 2007, 62b, 173.
-
The stannidesScNi1.54(1)Sn and ScNi1.85(1)Sn – Structures, 45Sc NMR and 119Sn Mössbauer spectroscopy. Peter, S. C.; Eckert, H.; Pöttgen, R. Solid State Sci., 2007, 9, 357.
-
Dimorphic ErAgSn and TmAgSn – High-pressure and high-temperature driven phase transitions. Peter, S. C.; Heymann, G.; Heying, B.; Rodewald, U. Ch.; Huppertz, H.; Pöttgen, R. Z. Anorg. Allg. Chem., 2007, 633, 1551.
-
Hydrogenation of the Ce(Rh1-xIrx)Ga system – Occurrence of antiferromagnetic ordering in the hydrides Ce(Rh1-xIrx)GaH1.8 Chevalier, B.; Heying, B.; Rodewald, U. Ch.; Peter, S. C.; Bauer, E.; Pöttgen, R. Chem. Mater., 2007, 437, 34.
-
Correlation between microstructure and electrical conduction behavior with defect structure of niobium doped barium stannate. Singh, P.; Peter, S. C.; Kumar, D.; Parkash, O. J. Alloys Compd., 2007, 437, 34.
-
119Sn solid state NMR and Mössbauer spectroscopy RECuSn (RE = Sc, Y, La, Lu). Peter, S. C.; Fehnse, C.; Eckert, H.; Hoffmann, R. –D.; Pöttgen, R. Solid State Sci., 2006, 8, 1386.
-
Structure refinements of REAuSn (RE = Sm, Gd, Tm). Peter, S. C.; Pöttgen, R. Z. Naturforsch., 2006, 61, 1145.
-
Magnetic ordering in RETSn (RE = Gd-Er and T = Cu, Ag) - An investigation by 119Sn Mössbauer spectroscopy and specific heat. Peter, S. C.; Rayaprol, S.; Pöttgen, R. Solid State Commun., 2006, 140, 276.
-
A new preparative approach to HgPbP14 structure type materials: Crystal structure of Cu0.73(1)Sn1.27(1)P14 and characterization of M1-xSn1-xP14 (M - Cu, Ag) and AgSbP14 Lange, S.; Peter, S. C.; Nilges, T. Z. Anorg. Allg. Chem., 2006, 632, 195.
-
Crystal chemistry and spectroscopic properties of ScAuSn, YAuSn, and LuAuSn. Peter, S. C.; Eckert, H.; Rayaprol, S.; Hoffmann, R. -D.; Pöttgen, R. Solid State Sci., 2006, 8, 560.
-
Ag3SnCuP10: [Ag3Sn] tetrahedra embedded in adamantane-type [P10] cages. Lange, S.; Peter, S. C.; Zhang, L.; Eckert, H.; Nilges, T. Inorg. Chem., 2006, 45, 5878.
-
[C6H21N4][Sb9S14O]: The first non centro-symmetric open Sb-S framework containing the new SbS2O building unit. Kiebach, R.; Näther, C.; Peter, S. C.; Mosel, B. D.; Pöttgen, R.; Bensch, W. J. Solid State Chem., 2006, 179, 3082.
-
Ferromagnetic ordering in the thallide EuPdTl2. Kraft, R.; Rayaprol, S.; Peter, S. C.; Pöttgen, R. Z. Naturforsch. B, 2006, 61, 159.
-
Crystal structure and specific heat of GdCuGe. Rayaprol, S.; Peter, S. C.; Pöttgen, R. J. Solid State Chem., 2006, 179, 2041.
-
Hydrogenation of intermediate valence ternary stannides CeRhSn and CeIrSn. Chevalier, B.; Peter, S. C.; Pöttgen, R. Solid State Sci., 2006, 8, 1000.
-
Structural, magnetic and spectroscopic studies of YAgSn, TmAgSn, and LuAgSn. Peter, S. C.; Eckert, H.; Fehnse, C.; Wright, J.; Attfield, P.; Johrendt, D.; Rayaprol, S.; Hoffmann, R. –D.; Pöttgen, R. J. Solid State Chem., 2006, 179, 2443.
-
Structure, chemical bonding and 119Sn Mössbauer spectroscopy of LaRhSn and CeRhSn. Schmidt, T.; Johrendt, D.; Peter, S. C.; Pöttgen, R.; Latka, K.; Kmie'c, R. Z. Naturforsch. B, 2005, 60, 1036.
-
Redistribution of cations amongst different lattice sites in Cu1-xCoxFe2O4ferrospinels during alkylation: magnetic study. Mathew, T.; Shylesh, S.; Reddy, S. N.; Peter, S. C.; Date, S. K.; Rao, B. S.; Kulkarni, S. D. Cat. Lett., 2004, 93, 155.
-
Regio selective butylation of toluene on mordenite catalysts: influence of acidity. Peter, S. C.; Pai, S.; Sharanappa, N.; Satyanarayana, C. V. V. J. Mol. Cat. A: Chemical, 2004, 223, 305.
-
The stannides TmAgSn and LuAgSn. Peter, S. C.; Pöttgen, R. Z. Anorg. Allg. Chem., 2004, 630, 1757.
-
Oxidative dehydrogenation of ethylbenzene over Cu1-xCoxFe2O4 catalyst system influence of acid–base property. Mathew, T.; Malwadkar, S.; Pai, S.; Sharanappa, N.; Peter, S. C.; Satyanarayana, C.V.V.; Bokade, V.V. Cat. Lett., 2003, 91, 217.